A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations

نویسندگان

  • William F. Mitchell
  • Marjorie A. McClain
چکیده

The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a particularly efficient method for solving partial differential equations because it can achieve a convergence rate that is exponential in the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the polynomial degree, p. Like adaptive refinement for the h version of the finite element method, a posteriori error estimates can be used to determine where the mesh needs to be refined, but a single error estimate can not simultaneously determine whether it is better to do the refinement by h or by p. Several strategies for making this determination have been proposed over the years. In this paper we summarize these strategies and demonstrate the exponential convergence rates with two classic test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations

We present a new “hp” parameter multi-domain certified reduced basis method for rapid and reliable online evaluation of functional outputs associated with parametrized elliptic partial differential equations. We propose a new procedure and attendant theoretical foundations for adaptive partition of the parameter domain into parameter subdomains (“h”-refinement); subsequently, we construct indiv...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Performance of hp-Adaptive Strategies for 3D Elliptic Problems

The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a particularly efficient method for solving partial differential equations (PDEs) because it can achieve an exponential convergence rate in the number of degrees of freedom. hp-FEM allows for refinement in both the element size, h, and the polynomial degree, p. Like adaptive refinement for the h versi...

متن کامل

Hp-finite Element Methods for Hyperbolic Problems A

This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...

متن کامل

A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs

We develop the a posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finiteelement methods for a class of second-order quasi-linear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh dependent) energy norm. The bounds are explicit in the local mesh size and the local polynomial degree of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009